City:  Aachen
Date:  Dec 2, 2024

Bachelor-/ Master Thesis »Synthetic Data for Deep learning Models in production«

The Fraunhofer-Gesellschaft (www.fraunhofer.com) currently operates 76 institutes and research units throughout Germany and is a leading applied research organization. Around 32 000 employees work with an annual research budget of 3.4 billion euros. 

At the Fraunhofer IPT in Aachen, we work with more than 530 employees every day to make the production of the future more digital, more flexible and more sustainable. In the department »Production Quality«, we deal with the digitalization of production systems in order to increase quality, resilience and sustainability in production. 

 

The application of deep learning models for visual process monitoring and quality control enables quality and efficiency gains in production. In this context, a typical challenge is the lack of representative training data, such as data of quality-critical anomalies. To increase the performance of deep learning models in these applications, there is potential in synthetic data to enrich existing data sets. The main challenge is the targeted generation of synthetic data points that are tailored to the requirements of the individual use cases. 

Within the scope of your thesis, you will investigate how pipelines for synthetic data generation must be designed in order to enhance the accuracy and robustness of deep learning models in production use cases.
 

 

What you will do

  • Literature research on the topics of deep learning and synthetic data
  • Identification of requirements for the design of efficient pipelines for synthetic data generation in production use cases
  • Development and implementation of a pipeline for synthetic data generation for a practical use case
  • Experimental validation based on a practical use case in the field of computer vision (e. g., visual quality control)
  • Preparation and documentation of results

 

What you bring to the table

  • You are studying mechanical engineering, industrial engineering, computer science or a comparable subject
  • You have first experience in Python
  • You have basic knowledge of the theory and methods in machine/deep learning
  • A self-responsible and structured way of working
  • Good language skills in German and/or English

 

What you can expect

  • Scientific work on a current and practice-relevant topic
  • Professional supervision and support for your thesis
  • Participation in innovative research and industry projects with industry partners
  • A state-of-the-art machine park equipped with edge cloud systems and 5G infrastructure

 

We value and promote the diversity of our employees' skills and therefore welcome all applications - regardless of age, gender, nationality, ethnic and social origin, religion, ideology, disability, sexual orientation and identity. Severely disabled persons are given preference in the event of equal suitability. 

With its focus on developing key technologies that are vital for the future and enabling the commercial utilization of this work by business and industry, Fraunhofer plays a central role in the innovation process. As a pioneer and catalyst for groundbreaking developments and scientific excellence, Fraunhofer helps shape society now and in the future. 

Interested? Apply online now. We look forward to getting to know you!
 

Maximilian Motz M.Sc.
Research assistant »Production Quality«
Phone: +49 241 8904-449

Fraunhofer Institute for Production Technology IPT 

www.ipt.fraunhofer.de 

 

Requisition Number: 69829                Application Deadline:

 


Job Segment: QC, Research Assistant, Computer Science, Industrial Engineer, Mechanical Engineer, Quality, Research, Technology, Engineering